
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 268 (2003) 881–895

A stiffness equation transfer method for natural frequencies
of structures

Huiyu Xue*

Department of Physics, Suzhou University, Suzhou, Jiangsu 215006, China

Received 19 April 2002; accepted 10 December 2002

Abstract

A stiffness equation transfer method is proposed for obtaining vibration frequencies of structures. This
method is an extension of the finite element-transfer matrix (FE-TM) method. In the present method, the
transfer of state vectors from left to right in the ordinary FE-TM method is changed into the transfer of
stiffness equations of every section from left to right. This method reduces the propagation of round-off
errors produced in the ordinary transfer matrix method. Furthermore, the drawback that the number of
degrees of freedom on the left boundary must be the same as that on the right boundary in the ordinary FE-
TM method, is now avoided. Besides, this method finds out the values of the frequency by Newton–
Raphson iteration method, so no plotting of the value of the determinant versus assumed frequency is
necessary. An IFETM—W program based on this method for use on an IBM PC586 microcomputer is
developed. Finally, numerical examples are presented to demonstrate the accuracy as well as the potential
of the proposed method for free vibration analysis of structures.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In vibration analysis of structures, exact solutions for the natural frequencies are possible only
for a limited set of simple structures and boundary conditions. Approximate numerical methods
are therefore important for the analysis of more complex systems. In numerical vibration analysis
of engineering structures, the microcomputer has been playing an increasingly important role in
China. The most powerful and most widely used numerical method in structural analysis is the
finite element (FE) method. The disadvantage of the FE method, however, is that for some
systems large matrices are produced which require large computers to handle them. In order to
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reduce the size of the matrices, some substructure techniques have been proposed which consist of
keeping the important degrees of freedom and suppressing the less important ones. Which degrees
of freedom in the substructure are to be retained depends on judgment and on the physical system.
But, this approach may lead to considerable inaccuracy if some degrees of freedom are wrongly
suppressed.

The combined finite element-transfer matrix (FE-TM) method was proposed for the first time by
Dokanish for free plate vibration problems [1]. Since then, several authors have proposed refinements
and extensions of this method [2–14]. This method has the advantage of reducing the stiffness matrix
size to a much smaller one than that obtained with the FE method and has been successfully applied
to various linear and non-linear structural problems, such as static structural analysis, natural
frequencies of structure, transient and steady state vibration response of structure, and non-linear
dynamic response of structure. However, it is pointed out that recursive multiplications of the
transfer and point matrices in ordinary FE-TM method are main sources of round-off errors.
Particularly, in calculating high resonant frequencies or the response of a long structure, the
numerical instability appears and it leads to an unwanted solution. The technique of exchanging state
vectors and the Riccati transformation of state vectors were, respectively, used for solving these
problems [5–8, 11–15]. In addition, the derivation of the transfer matrix from the dynamic stiffness
matrix ½G�i for strip i requires the inversion of the sub-matrix ½G12�i [1–3, 5–9]. In a strict sense, the
inversion is possible only if ½G12�i is a square matrix. But ½G12�i is a square matrix only if there are
equal numbers of nodes on the right boundary and on the left boundary of strip i. Therefore, most of
the previous formulations of the combined FE-TM method are only applicable to models which have
the same number of nodes on all the substructure boundaries. In order to alleviate this restriction on
the finite element model, Degen et al. proposed a new FE-TM method based on a mixed finite
element formulation [4]. Bhutani and Loewy proposed a procedure for deriving a transfer matrix by
adding the zero elements to the state vectors which allows different number of nodes on the right and
on the left boundary [10]. However, in these methods, recursive multiplications of the transfer and
the point matrices are still necessary. Even though various techniques for treating these problems
were presented [4–8, 10–14], research on this problem are as yet insufficient.

The purpose of this paper is to present a stiffness equation transfer (SET) method to overcome
simultaneously both these two disadvantages in the ordinary FE-TM method. In the present
method, the transfer of state vectors from left to right in the FE-TM method is transformed into a
transfer of general stiffness equations in every section from left to right. Therefore, the inverse
matrix of sub-matrix ½G12�i of the FE-TM method becomes the inverse matrix of sub-matrix ½G11�i
of the present method. It is well known that ½G11�i is always a square matrix whether the structures
are rectangular or not. Since the numerical solution of a two-point boundary value problem in the
ordinary FE-TM method has been converted into the numerical solution of an initial value
problem, the propagation of round-off errors occurring in recursive multiplications of the transfer
and point matrices is avoided.

In the present method, the transfer matrix of stiffness equations and its derivatives with respect
to frequency are formulated for the right boundary. This transfer matrix relation is then used in
the determination of natural frequencies via a Newton–Raphson iterative technique. The present
proposed method gives a quadratic convergence to a natural frequency from the trial value on
either side of the true natural frequency and hence allows a greater degree of error in the selection
of the trial frequency.
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2. A stiffness equation transfer (SET) method

Without losing generality, we consider the plate shown in Fig. 1. It is divided into n strips and
each strip is subdivided into finite elements. The vertical sides dividing or bordering the strips are
called sections. It is apparent that the right of section i is the left of strip i.

2.1. An ordinary finite element-transfer matrix (FE-TM) method

Let Uf gi and Nf gi be the free vibration displacement and force vectors of strip i, Uf gR
i and

Nf gR
i be the right free vibration displacement and force vectors of section i, Uf gL

iþ1 and Nf gL
iþ1 be

the left free vibration displacement and force vectors of section i þ 1; so that we have

fUgi ¼ ½fUgR
i ; fUgL

iþ1�
T;

fNgi ¼ ½fNgR
i ; fNgL

iþ1�
T:

ð1Þ

If o is the natural frequency of free vibrations, the equilibrium equations for the nodes on strip i
can be written as

ð½K �i 	 o2½M�iÞ Uf gi¼ Nf gi; ð2Þ

where ½K �i and ½M�i are the final stiffness and mass matrix of strip i, respectively.
Substituting Eq. (1) into Eq. (2), the later can be written as

½G�i
fUgR

i

fUgL
iþ1

" #
¼

fNgR
i

fNgL
iþ1

( )
; ð3Þ

in which

½G�i ¼ ½K �i 	 o2½M�i: ð4Þ

Matrix ½G�i is the dynamic stiffness matrix for the strip i and it may be partitioned into four sub-
matrices and Eq. (3) may be rewritten as

½G11� ½G12�

½G21� ½G22�

" #
i

fUgR
i

fUgL
iþ1

( )
¼

fNgR
i

fNgL
iþ1

( )
: ð5Þ
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Fig. 1. Subdivision of structure into strips and finite elements.
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The displacements are continuous across section i, so that we obtain

Uf gR
i ¼ Uf gL

i : ð6Þ

Due to the continuity of force at section i, we obtain

Nf gR
i ¼ 	 Nf gL

i : ð7Þ

Substituting Eq. (6) and Eq. (7) into Eq. (5), with a little algebraic manipulation, Eq. (5) can be
rearranged to the form

fUgL
iþ1

fNgL
iþ1

( )
¼

½T11� ½T12�

½T21� ½T22�

" #
i

fUgL
i

fNgL
i

( )
¼ ½T �i

fUgL
i

fNgL
i

( )
; ð8Þ

where

½T11�i ¼ 	½G12�	1
i ½G11�i;

½T12�i ¼ 	 G12½ �	1
i ;

½T21�i ¼ ½G21�i 	 ½G22�i½G12�	1
i ½G11�i;

½T22�i ¼ 	½G22�i½G12�	1
i :

ð9Þ

By proceeding in the same manner as in Ref. [1], we obtain the transfer matrix of the state
vectors for the total structure:

fUgL
nþ1

fNgL
nþ1

( )
¼ ½P�

fUgL
1

fNgL
1

( )
; ð10Þ

in which

½P� ¼ ½T �n½T �n	1 
 
 
 ½T �1: ð11Þ

Eq. (10) relates the section variables of the left boundary of the structure to those of the right
boundary of the structure. The boundary conditions of the left edge of the structure would require
some components of the state vectors to be zeros. Similarly, the boundary conditions of the right
edge of the structure would also require certain components of the state vectors to be zeros. When
these conditions are incorporated, it becomes essential that the determinant of a portion ½Q� of the
matrix ½P� be zero at the correct natural frequency, for a non-trivial solution. That is, the natural
frequencies are determined from the roots of the polynomial det½QðoÞ� ¼ 0: In this method, it is
obvious that the sub-matrix ½G12�i must be a square matrix in order to obtain ½T �i: In addition to
this, propagation of round-off errors due to recursive multiplications of transfer matrix ½T �i in
Eq. (11) occurs.

2.2. Transfer matrix for stiffness equations

In order to overcome the drawback in the ordinary FE-TM method, the present method makes
a change of the transfer of state vectors from left to right in the ordinary FE-TM method to the
transfer of stiffness equations of every section from left to right. At the same time, the recursive
multiplications of the transfer matrix ½T �i are avoided.
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Similarly as in generalized Riccati transformation of state vectors [15], we assume that the
generalized stiffness equations which relate the force vectors to the displacement vectors on the
left of section i are given by

Nf gL
i ¼ ½S�i Uf gL

i þ Ef gi ðiX2Þ; ð12Þ

where ½S�i; is the coefficient matrix of the stiffness equation for section i, and fEgi; the equivalent
external force vectors on the section i.

Substituting Eqs. (6) and (7) into Eq. (12), we obtain

Nf gR
i ¼ 	½S�i Uf gR

i 	 Ef gi: ð13Þ

Eq. (13) describes the relation between the free vibration internal force vectors and the
displacement vectors on the right of section i.

By expanding Eq. (5) and using a series of additional operations, we obtain

Uf gR
i ¼ 	½V �	1

i ½G12�i Uf gL
iþ1	½V �	1

i Ef gi; ð14Þ

and

Nf gL
iþ1¼ S½ �iþ1 Uf gL

iþ1þ Ef giþ1; ð15Þ

where

½V �i ¼ G11½ �iþ½S�i; ð16Þ

½S�iþ1 ¼ G22½ �i	½G21�i½V �	1
i ½G12�i; ð17Þ

fEgiþ1 ¼ 	½G21�i½V �	1
i fEgi: ð18Þ

Eq. (15) represents the relationships between the internal force vectors and the displacement
vectors on the left of section i+1.

2.3. Transfer of entire structure

Supposing ½S�2 and fEg2 are known, using Eqs. (17) and (18), ½S� and fEg are transferred from
the left of the second section to the right of the total structure. Hence, we have

Nf gL
nþ1¼ ½S�nþ1fUgL

nþ1 þ fEgnþ1: ð19Þ

It is worth noting that the transfer matrix ½P� in Eq. (10) for the ordinary FE-TM method is
replaced by the stiffness equation matrix ½S�nþ1 in Eq. (19) for the SET method. The dimension of
matrix ½S�nþ1 is only half that of the matrix ½P�: In the SET method, the number of storage
requirements would be only about half of the FE-TM method. In addition, the stiffness equation
matrix ½S�nþ1 is obtained by recursively using Eqs. (17) and (18) , and not by recursive
multiplications of transfer and point matrices, so the propagation of round-off errors occurring in
recursive multiplications of transfer and point matrices is avoided.
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2.4. The method of determining ½S�2 and fEg2

For strip 1, by expanding Eq. (5), we have

½G11�1fUgR
1 þ ½G12�1fUgL

2 ¼ fNgR
1 ; ð20Þ

½G21�1fUgR
1 þ ½G22�1fUgL

2 ¼ fNgL
2 : ð21Þ

It is obvious that fUgR
1 and fNgR

1 may be determined by using the left-hand boundary
conditions of the total structure. Since the left-hand boundary conditions are homogeneous, in
general, we may discuss the following three cases:

2.4.1. Zero displacement boundary condition

Let the displacement vector of the left boundary fUgR
1 be {0}. By Eq. (21), we obtain

½S�2 ¼ ½G22�1; ð22Þ

fEg2 ¼ f0g: ð23Þ

2.4.2. Zero force boundary condition

Let the force vector of the left boundary fNgR
1 be {0}. Hence from Eq. (20) fUgR

1 is obtained.
Then, substituting fUgR

1 into Eq. (21), we have

½S�2 ¼ ½G22�1 	 ½G21�1½G11�	1
1 ½G12�1; ð24Þ

fEg2 ¼ f0g: ð25Þ

2.4.3. Mixture boundary condition

In mixture boundary condition, we suppose fUgR
1 ¼ ½fU 0gR

1 ; fU 00gR
1 �

T and the corresponding
fNgR

1 ¼ ½fN 0gR
1 ; fN 00gR

1 �
T; in which fU 00gR

1 ¼ f0g; fN 0gR
1 ¼ f0g and the corresponding fN 00gR

1 and
fU 0gR

1 are unknown. For strip 1, Eq. (5) is rearranged and repartitioned. So we have

½H11� ½H12� ½H13�

½H21� ½H22� ½H23�

½H31� ½H32� ½H33�

2
64

3
75

fU 0gR
1

fU 00gR
1

fUgL
2

8><
>:

9>=
>; ¼

fN 0gR
1

fN 00gR
1

fNgL
2

8><
>:

9>=
>;: ð26Þ

Expanding Eq. (26) and solving the relations between fNgL
2 and fUgL

2 ; we obtain

½S�2 ¼ ½H33� 	 ½H31�½H11�	1½H13�; ð27Þ

fEg2 ¼ f0g: ð28Þ
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2.5. Determination of natural frequencies

From above, for different kinds of left homogeneous boundary conditions, we have fEg2 ¼
f0g: Using Eqs. (17) and (18), ½S� and fEg are transferred from left to right through all the
structures. Hence we have

Nf gL
nþ1¼ ½S�nþ1fUgL

nþ1; ð29Þ

fEg2 ¼ fEg3 ¼ 
 
 
 ¼ fEgnþ1 ¼ f0g: ð30Þ

The boundary conditions of the right edge of the structure usually require some components of
state variables to be zeros. When these conditions are added, it becomes essential that the
determinant of a portion ½Q� of the matrix ½S�nþ1be zero at the correct natural frequency, for a
non-trivial solution. Without losing generality, let fNgL

nþ1 ¼ ½fN1g
L
nþ1; f0g�

T; fUgL
nþ1 ¼

½f0g; fU2g
L
nþ1�

T; in which fN1g
L
nþ1 is a portion of the force vector fNgL

nþ1 corresponding to non-
zero elements at the right boundary and fU2g

L
nþ1 is a portion of the displacement vector fUgL

nþ1

corresponding to non-zero elements at the right boundary. According to the right boundary
condition, from Eq. (29) we have

N1f g

0f g

( )L

nþ1

¼
S11½ � S12½ �

S21½ � S22½ �

" #
nþ1

0f g

U2f g

( )L

nþ1

: ð31Þ

This can be split into the following two equations:

N1f gL
nþ1¼ ½S12�nþ1fU2g

L
nþ1; ð32Þ

0f g ¼ ½S22�nþ1fU2g
L
nþ1: ð33Þ

For the non-trivial solution of Eq. (33), it is essential that the determinant of matrix ½S22�nþ1 be
zero at the correct natural frequency. The matrix ½Q� is therefore, in this particular case, the matrix
½S22�nþ1: That is, the natural frequencies are determined from the roots of the polynomial

DðoÞ ¼ det½QðoÞ� ¼ 0: ð34Þ

In general, the matrix ½Q� is obtained from matrix ½S�nþ1 by deleting the columns corresponding
to zero elements of fUgL

nþ1 and deleting the rows corresponding to the non-zero elements of
fNgL

nþ1:
Now as in the work by Feng et al. [11], we also adopt the Newton–Raphson iteration technique

as follows: differentiating Eqs. (16) and (17) with respect to o; respectively, we obtain

½ ’V�i ¼ ½ ’G11�i þ ½ ’S�i; ð35Þ

½ ’S�iþ1 ¼ ½ ’G22�i 	 ½ ’G21�i½V �	1
i ½G12�i 	 ½G21�i½V �	1

i ½ ’G12�i 	 ½G21�i½ ’V�	1
i ½G12�i; ð36Þ

where the dot represents the differentiation with respect to o: With a little algebraic manipulation,
we have

½ ’V�	1
i ¼ 	½V �	1

i ½ ’V�i½V �	1
i : ð37Þ

Substitution of Eq. (37) in Eq. (36) leads to

½ ’S�iþ1 ¼ ½ ’G22�i 	 ½ ’G21�i½V �	1
i ½G12�i 	 ½G21�i½V �	1

i ½ ’G12�i þ ½G21�i½V �	1
i ½ ’V�i½V �	1

i ½G12�i: ð38Þ
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For different kinds of left-hand boundary condition, differentiating Eqs. (22), (24) and (27)
with respect to o; respectively, we have

for zero displacement boundary

½ ’S�2 ¼ ½ ’G22�1; ð39Þ

for zero force boundary

½ ’S�2 ¼ ½ ’G22�1 	 ½ ’G21�½G11�	1
1 ½G12�1 	 ½G21�1½G11�	1

1 ½ ’G12�1 þ ½G21�1½G11�	1
1 ½ ’G11�1½G11�	1

1 ½G12�1; ð40Þ

for mixture boundary

½ ’S�2 ¼ ½ ’H33�1 	 ½ ’H31�½H11�	1½H13� 	 ½H31�½H11�	1½ ’H13� þ ½H31�½H11�	1½ ’H11�½H11�	1½H13�: ð41Þ

With Eqs. (38)–(41), ½ ’S� are transferred from left to right through all the structures, we obtain
½ ’S�nþ1; and the matrix ½ ’Q� as well.

The recurrence relation between the trial frequencies based on the Newton–Raphson method is

onew ¼ otrial 	
det½Q�

ðdet½Q1� þ det½Q2� þ 
 
 
 þ det½Qp�Þ
; ð42Þ

where p is the order of the matrix ½Q�: In Eq. (42), the determinants are evaluated at o ¼ otrial and
the coefficients of the matrices ½Q�1; ½Q�2;y; ½Q�p are identical to those of matrix ½Q� except for the
following coefficients which are related to the coefficients of matrix ½ ’Q�:

Q1ði; 1Þ ¼ ’Qði; 1Þ;Q2ði; 2Þ ¼ ’Qði; 2Þ;y;

Qpði; pÞ ¼ ’Qði; pÞ; i ¼ 1; 2;y; p:
ð43Þ

Since ½Q�; ½Q1�; ½Q2�;y; ½Qp� are known, they can be directly used in Eq. (42) to calculate the
natural frequencies systematically.

The number of steps for convergence when using this method depends on the closeness of the
initial frequency to the true natural frequency. In the vicinity of a root, the convergence is
quadratic. Since the Newton–Raphson iteration technique requires a derivative of the function at
each step, the computation time is doubled per step. However, this increase in computation time
per step is offset by fewer steps for the same final accuracy. An additional advantage of the
Newton–Raphson method is that it is a single point method requiring only one initial trial value.
Besides, it has a known sufficient condition for convergence [16] given by otrial 	 otruej jpd=ðn 	
1Þ; where d is the separation between the true natural frequency under consideration and its
nearest neighboring natural frequency, and n is the degree of the polynomial DðoÞ under
consideration.

3. Numerical examples

In order to examine the accuracy and the computation efficiency of our method, we developed a
program IFETM–W on an IBM PC586 microcomputer. In this section, a flat, cantilevered
triangular plate is first analyzed to obtain its fundamental frequency for checking purposes, and
then the natural frequencies of the simply supported plate and the shear-wall structure with
supporting frames are given to illustrate the validity of the proposed method.
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The first example considered here is a flat, cantilevered, triangular plate shown in Fig. 2. The
material and geometric properties are: Young’s modulus E ¼ 2:07 1011 Pa; mass density r ¼
7850 kg=m3; the Poisson ratio m ¼ 0:3; isosceles side length=0.254m, and plate
thickness=1.55 10	3. The experimental value of the fundamental frequency given by Gustafson
et al. is 34.5Hz [17]. Bathe and his colleagues applied the standard finite element method based on
the discrete Kirchhoff theory using a mesh with four segments per side [18]. The value of the first
natural frequency obtained was also 34.5Hz. For the present study, three cases with increasing
number of substructures were studied. For the first case, the plate structure was modelled as one
of two substructures; for the second case the structure was divided into three substructures and so
on. Each substructure was further divided into triangular elements such that the plate has an
equal number of segments per side. A three–node plate element was used to formulate the element
elastic matrices for each substructure [19]. A lumped mass representation was used to form the
mass matrix of the substructure. The mass of each substructure was assumed to be concentrated at
the substructure interfaces only. The nodal mass m in the mass matrix was calculated as m ¼ 1

3
mt;

where mt is the total mass of all the triangular elements connected to that node. Table 1 shows
agreement between the frequency calculated by the present SET method and the experimental
result. The frequency increases initially when the number of substructures is increased and then
converges to 34.5Hz. In this example, the number of nodes on the left boundary is different from
that on the right boundary. Most of the ordinary FE-TM method can only be applied to the
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Fig. 2. A triangular cantilevered plate.

Table 1

Comparison of the SET method result with experiment result for the case of a flat triangular cantilevered plate

No. of segments/side No. of elements Fundamental frequency (Hz)

2 4 28.89

3 9 32.45

4 16 34.48

Experimental — 34.5 [17]
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chain-like structure which has equal number of degrees of freedom on the boundaries, so the
ordinary FE-TM method and the combined finite element- Riccati transfer matrix (FE-RTM)
method [1–3, 5–9] could not be used in this case. The present method has potentially wider
application than the ordinary FE-TM method and the FE-RTM method.

The second example is to obtain the first nine natural frequencies of a simply supported
rectangular plate as shown in Fig. 3. The plate chosen is 200 cm 300 cm 0:6 cm with a specific
weight of 24:74 kN=m3; m ¼ 0:23;E ¼ 6:895 104 MPa: This problem has an exact analytical
solution. We can compare the computed result with the exact solution. In the numerical
calculation, the plate was divided into 30 strips and each of them subdivided into 40 triangular
plate elements. The stiffness matrix and mass matrix of the plate element were formed in the same
way as Example 1. Table 2 shows a comparison of natural frequencies among the exact analytical
solution , SET solutions, FE solutions and the ordinary FE-TM solutions, where SET, FE and
FE-TM methods are applied to the same mesh pattern. Table 3 shows the computation time for
each method. Table 4 shows the comparison of the maximum mode displacements at the right
boundary in our example (the maximum mode displacement at all nodes is normalized to 1).
From the above results, it is found that SET method has the same accuracy of the FE method by
using the same element mesh pattern, but higher computation efficiency. In comparison with the
ordinary FE-TM method, it has lower round-off errors and higher computation efficiency.
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Fig. 3. Simply supported rectangular plate model.

Table 2

Comparison of natural frequencies for simply supported rectangular plate (Hz)

Mode numbers FE FE-TM SET Exact solution

1 5.317 5.318 5.318 5.329

2 10.20 10.19 10.19 10.25

3 16.33 16.34 16.33 16.40

4 18.31 18.31 18.31 18.45

5 21.09 21.02 21.09 21.31

6 29.05 28.90 29.08 29.52

7 29.36 29.20 29.33 29.92

8 34.04 33.63 33.99 34.85

9 38.74 38.20 38.76 39.74
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Especially, the mode displacements at the right boundary in our example should be zero. However
in the ordinary FE-TM method, owing to the propagation of round-off errors occurring in
recursive multiplications of transfer and point matrices, they are not. This discrepancy becomes
more serious for the higher modes. Our SET method can reduce the propagation of round-off
errors produced in the ordinary FE-TM method.

In the third example, we analyzed a shear-wall structure with supporting frames to demonstrate
the wider applicability of the present method. The present SET method not only be applied to the
ordinary plate, but also to the other structures. Consider the shear-wall structure shown in Fig. 4,
each node has six degrees of freedom:u; v;w; yx; yy; yz: The shear-wall consists of 30 rectangular
plate elements, where the physical and geometric parameters of each plate element are as follows:
E ¼ 3 1010 Pa;m ¼ 0:1667;r ¼ 3000 kg=m3;thickness t ¼ 0:2 m; length l ¼ 8 m; and width b ¼
3 m: A four-node plane stress element was used to formulate the element elastic matrices [19]. A
lumped mass representation was used to formulate the mass matrices. The total number of beam
and column elements forming the supporting frames is 150. The physical and geometric
parameters of them are as follows: E ¼ 3 1012 Pa; r ¼ 2500 kg=m3: For horizontal beams, the
dimension is 8 m 0:28 m 0:28 m: For longitudinal columns, that is 3 m 0:4 m 0:4 m: In
addition, on the nodes 46, 48, 50, 52, 54, there are lumped mass of 5000 kg; respectively. Tables 5
and 6 show a comparison among the SET solutions, FE-TM solutions and the FE solutions.
Table 7 shows the comparison of the maximum mode moments at the top boundary in our
example (the maximum mode moment at all nodes is normalized to 1). Similar results as in
Example 2 are obtained. It is worth noticing that the mode moments at the top boundary in our
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Table 3

Comparison of computation time for simply supported rectangular plate

Method by applying Computation time (s)

FE 310

FE-TM 228

SET 168

Table 4

The maximum mode displacement w at the right boundary of the simply supported rectangular plate (the maximum

mode displacement w at all nodes is normalized to 1)

Mode numbers SET FE-TM

1 0.0 0.0017

2 0.0 0.0028

3 0.0 0.0154

4 0.0 0.0475

5 0.0 0.0852

6 0.0 0.1247

7 0.0 0.1343

8 0.0 0.1625

9 0.0 0.1891
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example should be zero. However, in the ordinary FE-TM method, owing to round-off errors,
they are not. The present SET method can offer solutions which can be strictly satisfied with the
boundary conditions.
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Fig. 4. A shear-wall structure.

Table 5

Comparison of natural frequencies of the shear-wall structure (Hz)

Mode number FE FE-TM SET

1 3.194 3.192 3.193

2 3.248 3.254 3.251

3 4.069 4.079 4.074

4 10.83 10.69 10.78

5 11.92 11.79 12.03

6 14.76 14.58 14.69

7 15.02 14.86 14.91

8 16.66 16.48 16.60

9 17.01 16.82 16.95
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4. Conclusions

In this paper, a stiffness equation transfer method has been proposed for obtaining natural
frequencies of structures. Some numerical examples presented in this paper show that this method
has the advantages of reducing the order of a matrix obtained by the FE method or the ordinary
FE-TM method and minimizing the propagation of round-off errors occurring in recursive
multiplications of transfer and point matrices. Furthermore, the drawback that the number of
degrees of freedom on the left boundary must be the same as that on the right boundary in the
ordinary FE-TM method, is avoided. It also has an additional advantage that in present method,
one does not need to calculate so many values of the determinants and plot them versus assumed
values of the frequencies. The present method, therefore, has potentially wider application than
the ordinary FE-TM method.
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Table 6

Comparison of computation time for the shear-wall structure

Method by applying Computation time (s)

FE 260

FE-TM 169

SET 124

Table 7

The maximum mode moment at the top boundary of the shear-wall structure (the maximum mode moment at all nodes

is normalized to 1)

Mode numbers SET FE-TM

1 0.0 0.0002

2 0.0 0.0005

3 0.0 0.0023

4 0.0 0.0088

5 0.0 0.0213

6 0.0 0.0631

7 0.0 0.1026

8 0.0 0.1253

9 0.0 0.1548
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Appendix A. Nomenclature

UiNi displacement and internal force vectors of strip i, respectively
UL

i UR
i displacement vectors on the left and right of section i, respectively

NL
i NR

i internal force vectors on the left and right of section i, respectively
UL

iþ1NL
iþ1 displacement and internal force vectors on the left of section i+1,

respectively
½K �i stiffness matrix of strip i

½M�i mass matrix of strip i
½G�i ½K�i 	 o2½M�i dynamic stiffness matrix of strip i

½G11�i½G12�i½G21�i½G22�i sub-matrix of the matrix ½G�i
½T �i transfer matrix of strip i

½P� ½T �n½T �n	1?½T �1 total transfer matrix of the structure
½S�i coefficient matrix of stiffness equation for section i

Ei equivalent external force vectors on the section i
½V �i ½G11�i þ ½S�i
½ ’S�i derivative of ½S�i with respect to frequency
½Q� partitioned matrix
½ ’Q� derivative of ½Q� with respect to frequency
½Q1�½Q2�?; ½Qp� modified matrices of matrix ½Q�
o frequency (rad/s)
E Young’s modulus
r mass density
m the Poisson ratio
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